决策树解决回归问题
1 2
| import numpy as np import matplotlib.pyplot as plt
|
1 2 3 4 5
| from sklearn import datasets
boston = datasets.load_boston() X = boston.data y = boston.target
|
1 2 3
| from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
|
Decision Tree Regressor
1 2 3 4
| from sklearn.tree import DecisionTreeRegressor
dt_reg = DecisionTreeRegressor() dt_reg.fit(X_train, y_train)
|
DecisionTreeRegressor(criterion='mse', max_depth=None, max_features=None,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
presort=False, random_state=None, splitter='best')
1
| dt_reg.score(X_test, y_test)
|
0.58605479243964098
1
| dt_reg.score(X_train, y_train)
|
1.0