决策树回归

决策树解决回归问题

1
2
import numpy as np
import matplotlib.pyplot as plt
1
2
3
4
5
from sklearn import datasets

boston = datasets.load_boston()
X = boston.data
y = boston.target
1
2
3
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)

Decision Tree Regressor

1
2
3
4
from sklearn.tree import DecisionTreeRegressor

dt_reg = DecisionTreeRegressor()
dt_reg.fit(X_train, y_train)
DecisionTreeRegressor(criterion='mse', max_depth=None, max_features=None,
           max_leaf_nodes=None, min_impurity_decrease=0.0,
           min_impurity_split=None, min_samples_leaf=1,
           min_samples_split=2, min_weight_fraction_leaf=0.0,
           presort=False, random_state=None, splitter='best')
1
dt_reg.score(X_test, y_test)
0.58605479243964098
1
dt_reg.score(X_train, y_train)
1.0

Powered by Hexo and Hexo-theme-hiker

Copyright © 2013 - 2021 Inner peace All Rights Reserved.

UV : | PV :